画像認識Alを活用した火花自動検知システムの開発処理現場での有効性を証明

本事業は，廃棄物処理施設におけるリチウムイオン電池等の火災防止に特化し，処理現場
火花自動検知システム（SparkEye ${ }^{\text {TM }}$ ）の開発を行った。発火リスクの高い破砕機に直接設置 でき 検知から消火まで全自動の無人防火ソリューションの特長を有する。さらに，産廃処理現場および自治体一般廃棄物処理施設への導入と実証試験を通し，その有効性を確認でき た。

1．はじめに

近年，廃宩物处理施設においてリチウム イオン電池に起因する火災事故が急増し，防火対策が契緊の課題となっている。安全安心な静脈施設を実現するためには，多重防謢の考え方が重要 ${ }^{1)}$ であり，以下に示す 2 つの方面から方策を講じることが有効で あると考えられる
（1）プリベンション（排出側における適切な排出の徹底）
（2）フェイルセーフ（受入側における事故防止対策の実施）
（1）に関しては環境省や自治体，関連団体 においてリチウムイオン電池の適切な分別排出の指導や要望等，適正処理に向けて動 き出している。しかし，（2）に関して，筆者 らの調査では，廃裹物処理施設の実態に対応し，十分な機能を備える有効な火災防止 システムが存在しないと考えている。
一方で，近年，AI（人工知能）•IoT（モ ノのインターネット）をはじめとした先進的ICT（情報通信技術）の急速な進化によ り，さまざまな分野で自動化が実現されて いる。

こうした背景のなかで，本事業は，廃裹

物処理施設における火災防止に特化し，先進的ICTを活用し，さらに大栄環境グルー プの処理現場の協力を得て，共同でAI火花検知システム（Spark Eye ${ }^{\text {TM }}$ ）の開発を行った。本誌では，Spark Eye ${ }^{\mathrm{TM}}$ の機能概要と処理現場での有効性検証について紹介する。

2．廃棄物処理施設における火災予防措置

に求められる機能
一定規模以上の事業所では，法定の火災報知設備を設置する義務がある。しかし，一般的な煙や熱検知器では，検出感度が低 いことや誤検知等の課題があり，静脈施設 における火災事故率は依然と高いままであ る。また，火の発生元から既存検知器の検出範囲に届くまでは時間がかかり，すでに可燃物への引火や延焼が拡大され，消火措置が手遅れになってしまう場合があると考 えられる。そこで多くの事業所では作業員 の目視碓認による巡回監視が行われ，業務負担が増加している。
以上の実態を鑑み，火の発生元で自動的 に異常を素早く検知し，さらに自動消火の制御までできれば，安全性の向上だけでは

なく，業務負担の軽減 も実現でき，効果的な対策になると考えられ る。

筆者らの調査では，廃棄物処理施設におい て，火の発生元として多く発生するのは，（1）破砕機，（2）コンベヤ， および（3）可燃物保管場所の 3 カ所である。そ れぞれ発火の特徴が異 なり，表1に整理する。 とくに，近年リチウム イオン電池等の異物が混入し，破砕機におけ る刃の衝撃圧力による発火が発生元になる場合が多く確認できてい る（写真 1 ）。
表1に示すような対象設備の実態により，従来の検知器の動作環境に適応しない場合や，検知範囲がカバー できない場合があると考えられる。とくに破砕機について火花の発生元である刃の部分では，破砗対象物や粉じんが飛び散る環境であり，密閉式が多く，ほとんどの火災検知器では直接的に設置や検知ができない のが現状である。またコンベヤと保管場所 の場合，対象エリアが広く検出範囲に限界 があると考えられる。また，安定運転を確保するためには，誤検知率を下げるための感度調整機能が必要であるが，既存検知器 では対応できない場合が多い。さらに，事故原因の究明や安全向上策の検討に活用可能な事故事例のデータベース化，およびり アルタイムの可視化システムが求められて いる。
そこで，本事業は，火花や煙等の異常を発生元で素早く自動検知し，事故に進展し ないように，現場の実際のニーズに応じ，以下に示す機能を有するAI火花検知シス テム（Spark Eye ${ }^{\text {TM }}$ ）の開発を行った。

写真1 リチウムイオン電池破砕の瞬間

表1 設備別の発火の特徵

対象設備	危険発生	特徵	ハザード（危険要因）
破兂機	火花，火，発熱，煙	火花や発熱の発生元	リチウムイオン電池や可燃性 ガスボンベ等が混入し，強い圧力を加わると発火
コンベヤ	発熱，煙，火	破砕後の対象物がコンベヤに て搬送される	破硨機から火や発熱物の落下 による可燃物への引火
可燃物保管場所 （ごみピット等）	発熱， 煙，火	破砕前や破砕後の対象物の保管	破矿機から火や発熱物の落下 による可燃物への引火，可然物の発硣による発熱

火花の発生元を抑え，破砕機の中を直接的に自動検知ができること
超高感度で一瞬の火花を逃さず検知でき ること
検知可能物：（1）火花，（2）火，（3）煙，（4）熱誤検知率を下げるための感度調整ができ ること
無人で自動消火制御ができること
リアルタイムの可視化•DB化ができる こと
静脈施設における安全安心を実現させる ためには，「安全配慮設計」，「操業管理」 および「情報公開」の相互連携が重要であ る ${ }^{1)}$ 。上記機能を備えるSpark Eye ${ }^{\mathrm{TM} \text { を }}$活用することで，それぞれのプロセスにお いて安全安心システムの高度化を図ること ができると考えられる。

3．「AI火花検知システム（Spark

 Eye $\left.{ }^{\text {TM }}\right)$ 」の概要本事業は，廃寁物処理施設における火災

写真2 ディープラーニングを用いた火花•煙の検知

図1 検知最小画素数知

表2 検知性能

項目	緒元	仕様
カメラ 性能	最大解像度	3264 （H）X 2448 （V）＠15fps
	最大フレームレート	30fps
	可変焦点距離	IR 5－50mm
検出性能	検出フレームレート	20 fps
	検出速度	0.05 秒以下
	検出最大距離	25 m ※火花直径 25 cm の場合
	検出エリア最大範囲	$20 \mathrm{~m} \times 14 \mathrm{~m}$ ※火花直径 25 cm の場合

（1）火花•火•煙の検知
画像解析および ディープラーニング技術を活用し，火花•火•煙を瞬時に検知することを実現 できた（写真 2 ）。検知最小画素数は図 1 に示すように，10 $\times 10$ ピクセルと なっている。カメラ の検知性能を表2に示す。

（2）熱の検知

Spark Eye ${ }^{\mathrm{TM}}$ には， サーモセンサーをシ ステムに組み达み， リアルタイムで熱を検知できるように なっている。熱の検知性能（奉験結果） を写真3に示す。

防止に特化し，様々な現場で適用できるよ うに，（1）火花，（2）火，（3）煙，（4）熱の4つの危険因子を検出できるAI火花検知システ ム（Spark Eye ${ }^{\mathrm{TM}}$ ，特許出願中）の開発を行った。

（3）Spark Eye ${ }^{T M}$ の機能と応用

本システムは，画像解析および画像認識 AIの技術により，リリチウイオン電池等 が破砕機において破砕された瞬間に発生す る火花をリアルタイムで自動検知（ 0.05 秒）

センサーと火の距離：約10．5m

写真3 サーモセンサーの検知性能

図2 Spark Eye ${ }^{\text {TM の構成と応用 }}$

し，アラート発報や自動散水を制御するこ とで，従来よりも前段階でりスクを検知で き，火災を未然に防ぐシステムである（図 2）。また，検知した画像や動画をクラウ ド上で管理できる可視化機能も備えており，定量的なリスク管理が可能になる。さらに，警報の感度調整を現場の火花発生状沉に応 じてクラウドシステムで簡単に設定ができ，誤動作を防止することが可能になる。
本システムの主要機能を以下に整理する。検出速度 0.05 秒以下（感度調整可能），

一瞬の火花でも逃さず，昼夜問わずに検知可能
火花の発生状況を鑑み，適切な警報しべ ルを設定可能（Email送信，遠隔監視ボー ドへアラート発信，PLC出力によるIoT警報ランプ・消火栓等の自動起動など）火花発生と終了時に，設定したメーリン グリストに画像付きの発生状況を送信可能
－クラウドシステムにて，検知状況を統計 グラフで確認できるとともに検知した画

写真4 破砗機におけるSpark Eye ${ }^{T M}$ 設置完了の様子

図3 検知実績（例）

像，日時，場所，開始時間，終了時間等 すべての検知情報をいつでもどこでも確認可能
クラウドシステムにて，カメラのリアル タイムモニタリングと 20 日間以上の動画記録が可能
クラウドシステムは，ID・パスワード管理，権限の設定が可能
検知情報データベースの蓄積により，操業診断，安全性解析等にビッグデータと して活用可能

4．処理現場での有効性検証

4－1 産廃施設への導入実績

2020年6月に，はじめてSpark Eye ${ }^{\text {TM }}$ を産業廃稁物処理事業所の容器包装リサイ クル施設の破砕機に設置し，オペレーショ ンを開始した。現地設置完了の様子を写真

4 に示す。現在まで安定的な運転を確認 できている。約半年間に4回ほど破砕機 における火花を検出 することができた （図3）。火花を検出するたびに，現場管理者メーリングリ ストに，画像付きの アラートメールが送信される。また，事前にSWMクラウド システムで設定した警報しベルに達した場合には，IoT技術 を用いて警報や自動的に生産ラインを停止させ，散水設備を自動的に起動させる ことができた。管理者が現場にいなくて も自動的な制御消火 ができたことを確認 できた。
これにより，リチ ウムイオン電池等の異物が破砗機に混入し発火しても火災事故に進展しないように， フェイルセーフ段階の対応策として， Spark Eye ${ }^{\mathrm{TM}}$ の有効性を確認できた。
さらに，取得した発火データは，リアル タイムでSWMクラウドシステムに記録コ れ，データベース化し，管理者が遠隔監視 や事故原因の究明に活用される。将来的に は，ビッグデータとして施設の安全性向上策の分析にも活用可能である。

4－2 自治体における実証試験

民間の産業廃裹物処理施設のほかに，自治体の一般廃裹物処理施設における実証が重要であると考えられる。そこで，多摩 ニュータウン環境組合の協力を得て，多摩清掃工場の破硗機施設において，Spark $\mathrm{Eye}^{\mathrm{TM}}$ を現場に仮設置し，2月10日～3

月 3 日にかけて約 3週間の現場実験を行った。
仮設置の状況を写真5に示し，検知 の結果を図4に示 す。実験期間中に，火花の発生を 1 回検出した。火花の持続時間が約1秒，4フ レームの検出結果と なった。火花の発生時間，終了時間，䇾報条件および画像 データ等の情報が記録 され，Spark Eye ${ }^{\mathrm{TM}}$ の有効性を碓認することができ た。今後も実証試験 を継続して実施する予定である。

5．おわりに

時代は絶対的安全から相対的安心ヘシフ トしている。AI•IoTが普及される時代 において，安全•安心な静脈施設を実現す るためには，以下に示す 3 点が重要である と考えられる。
a）ICTリテラシーの向上
b）安全配慮設計，操業管理におけるICT の利活用
c）周辺住民と充分なリスクコミュニケー ション
先進的なICTソリューションを用いて リスクマネジメントを行うことが，アナロ グな目視確認等より効果的であることは明 らかである。しかし，すでに定着している産業に新しい技術の受け入れは簡単ではな い。多くの場合は研究開発や実証による試行錯誤のプロセスを経る必要がある。現場 で碓実に使える効果的なICTソリューショ ンを実現させるためには，施設の運営管理者から行政当局，一般市民までステークホ ルダーのICTへの理解を深め，積極的に

取り組む姿勢が重要である。また，周辺住民の安心につなげるためには，ICTの普及•啓蒙をはじめ，ICTを活用した静脈施設の進化と施設側の努力を周辺住民に伝 え，住民の理解を獲得することが重要であ ると考えられる。
Spark Eye ${ }^{\mathrm{TM}}$ は，昨年 12 月より販売開始をしている。今後，廃裹物处理施設に特化した火災防止ソリューションとして広く普及推進を行っていく。

6．謝辞

共同開発を行う大栄環境グループおよび実証試験の場を提供して頂く多摩ニュータ ウン環境組合の方々に深く御礼申し上げる。

参考文献

1）小野田弘士，廃裹物处理・リサイクル施設におねける安全•安心，ペトロテック 37 巻 6 号，pp．32－38， 2014.6

